MAT 133 Chapter 6 Review

*Make any required rounding appropriate to at least 3 decimal places.

Rewrite each in exponential form.

- 1. $\log_2 64 = 6$
- 2. $\log_4 \frac{1}{64} = -3$
- 3. $\log 100 = 2$
- 4. $\ln x = 5$

Name_____

Evaluate each expression by hand.

8.	$\log_3 3 =$	9.	$\log_{6} 36 =$
10.	ln 1 =	11.	$\log_8 \frac{1}{8} =$
12.	$\log_4 4^{12} =$	13.	log 1000 =
14.	log(0.01) =		

Evaluate each expression by using a calculator*.

Rewrite each in logarithmic form. 15.		log 1077 =	
5.	$2^5 = 32$		$\ln(0.65) =$
6.	$5^{1/2} = \sqrt{5}$	17.	$\log_7 60$ Change to $log_7 60$ base 10 or e = =
7.	$e^{3x} = y$		$\log_3(-1.73) =$

Expand each expression into multiple logarithms.

19. $\log_6(3x)$

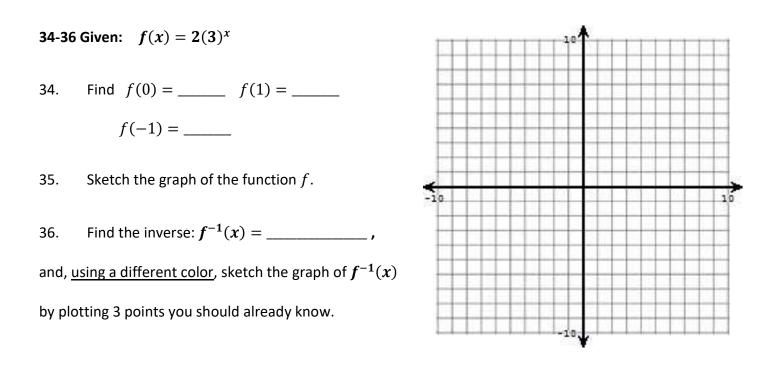
20. $\log(xy^2)$

21. $\ln(\frac{ab}{\sqrt{3}})$

Condense each expression into a single logarithm.

 $22. \qquad \log_3 7 - \log_3 x$

23. $3 \ln x - 2 \ln y$


24. $\log_7 4 + 2\log_7 x - \log_7 5$

Solve each equation for *x*. Check that each solution works in the original equation.

- 25. $2\log_4 5 = \log_4 x$
- 26. $3\log_5 2 + \log_5 x = \log_5 24$
- 27. $\log(2x 1) + \log 3 = 1$
- 28. $\ln(x+14) \ln x = \ln(x+6)$
- 29. $4^{x-1} = 16$
- 30. $e^{3x} = 4$

Match to the correct graph.

37. Find the inverse function: $y = \log_6(3x)$

- 38. a) Write the formula for a half-life function where the initial amount A(0) = 200 mg, and the half-life is 16 years.
 - b) How much remains after 10 years?
 - c) How long until only 20mg remains?

39. The number of bacteria, after being introduced to a sample environment for 2 days, is 430, and after 4 days, the number is 7500. How many bacteria were initially introduced to the sample environment?

40. a) Write the formula for interest compounded *monthly*, with an interest rate of 6.5%.

b) How long would it take for an investment to double in this account?